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SUMMARY

Four procedures of multiple comparisons are compared with respect to the probability
of the correct decision. Among the procedures there are two classical ones (Tukey and
Newman-Keuls), the FTP procedure of Califiski and Corsten and a new procedure

W. On the basis of a Monte Carlo experiment it is shown that none of the procedures
is uniformly the best.
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1. Introduction

Consider k normal populations N(y;,0?), i =1,...,k. The problem is to verify the
hypothesis

Ho:py="=mu.

This problem is known since the thirties, when Fisher (1935) developed his analysis
of variance. In the analysis of variance the decision is investigated means are equal
(Ho not rejected) or at least one mean is different from the others (Hy rejected).
The second case is less informative from the practical point of view. The practician
would like to know which of the means may be considered as equal, i.e. he would like
to divide the set {y,,...,u;} into subsets of equal means. Such subsets are called
homogeneous groups. Several procedures of dividing the set of means into homoge-
neous groups are known. The most famous and widely used in practical applications
are the procedures of Tukey, Scheffé, Bonfferroni and the Least Significant Difference.
Each procedure may give different homogeneous groups. The question is which of the
divisions is nearest to reality, i.e. which procedure gives “the best” division.
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Almost all procedures of multiple comparisons are described in Miller (1982)
and Hochberg and Tamhane (1988). These procedures may be divided into three
main groups: simultaneous confidence intervals, simultaneous hypothesis testing and
“others”. The problem is the comparison of procedures and selection of “the best” one.
For example, simultaneous confidence intervals are frequently compared with respect
to the length of individual intervals. But such a comparison is not good (Zielinski,
1990). Moreover, there is no reasonable criterion of comparison of procedures of
different types. A proposition of such a criterion may be found in Zielifiski (1991).
The criterion is the probability of the correct decision, i.e. the probability of obtaining
a division of a set of means consistent with reality.

DEFINITION (Zielifiski 1991). The subset {y,,, ..., ;_} is called a homogeneous group

if p;; =--- = p;_ and no other mean is equal to iy -

The aim of a multiple comparison procedure is to divide the set {u,..., Ki}
of means into homogeneous groups on the basis of a set of observations {Xs5:5=
1,...,n, i=1,...,k}. If the obtained division is equal to the real one we say that

the procedure made the correct decision. We are interested in the probability of the
correct decision, and a procedure with a higher probability is better. In what follows,
four procedures are compared with respect to that criterion. )

In the paper we restrict ourselves to the simplest situation. We assume that we
have samples with the same number of observations and the samples are independent.
Also, we assume equality of variances of the compared distributions.

2. Procedures

Consider four procedures: simultaneous confidence intervals of Tukey, the Newman—
Keuls multiple hypothesis test, cluster analysis procedure of Califiski and Corsten (F-
test Procedure, FTP) and a new procedure W. The first two procedures are classical
procedures and they were chosen with respect to results of Zielifiski (1991). Those
procedures may give non-disjoint homogeneous groups. The two latter procedures
divide a set of means into disjoint homogeneous groups. '

Let v = k(n — 1) and

Xi=%ZXij,i=1,-":ka 32=%ZZ(Xij—Xi)2'

i=1 i=1 j=1
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Tukey’s simultaneous confidence intervals

Tukey’s simultaneous confidence intervals have the following form:
S S S .. . .
P{#ﬁ =l € (Xn - Xi, iqg,u'—\/"—ﬁa) y forall 41,42 =1,...,k, 4 #Zz} =l-a

where gi, is a critical value of the studentized range. If zero is in the confidence
interval for Miy — My, then those two means are considered as equal. Applying that
rule to all confidence intervals, a division into homogeneous groups is obtained.

Multiple test of Newman—Keuls

The Newman—Keuls procedure is based on testing hypothesis H;,, . i, : p;, =
-- = p, for all sets of indices {41,...,im}, m=k,k—1,...,2, which are subsets of
{1,...,k}. Hypothesis H; is rejected if

1yeesim

‘/—{max{X 11 € {i1,...,im}} —min{X; 14 € {ig,...,im}}}

—qmv

If hypothesis H;, . .. ;.. is not rejected, then the decision is: Miy == ;.

The Newman-Keuls procedure is a stepwise one. It starts with m = k and m
is decreased. In the first step hypothesis Hi . _  (which is usually noted as Hp) is
verified. If the hypothesis is rejected, then the procedure goes to the second step,
otherwise it stops and equality of all means is claimed. The second step consists

of testing k subhypotheses pu; = -+ = p;_ = p 0y = -+ =y, 2 = 1,...,k, of
Hi, . . If an i-th hypothesis is rejected, then k — 1 subhypotheses are tested, or
else the set {4y,..., 4 _1,Mi11,-- -, Mt} is said to be a homogeneous group and none

of the subhypotheses is tested. Next steps consist in testing all the appropriate
subhypotheses of the hypothesis rejected in the previous step. The procedure stops
if there is nothing left to test.

Califiski-Corsten FT P procedure

The FTP procedure is based on an idea of cluster analysis. Let J = {I3,...,,}
be a division of {1,...,k} into disjoint subsets. For J let

S, J)=n) Y (X - X5,

i=1 jeI;
where

‘=——ZZXJI——ZX

]EI =1 ]EI;
and k; is the number of elements of I;. Let J* be a division into p disjoint subsets
such that S(p, J*) is minimal among S(p, 7). The procedure starts with p = 1 and p
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is increased till S(p, J*) < s*(k — 1)Fg_, ,, where Fy*,, is a critical value of the F
distribution with (k — 1,v) degrees of freedom. In this way we obtain a division J*
of a set of means into p disjoint homogeneous groups.

W procedure

The W procedure is very similar to the FTP procedure. It differs from the
previous one in selection of critical values. In the W procedure the number p of
homogeneous groups is increased till S(p, J*) < s*(k — p)Fg_, .

3. Criterion

Let S = {s1,52,...} denote the set of all possible divisions of the set of means
into homogeneous groups. Elements of the set S are disjoint subsets of R* and
for (py1,--,1) € RF there exists only one s € S such that (yy,...,u,) € s. Note
that S is a finite set. The elements of the set S are commonly called states of nature.

The aim of any multiple comparison procedure is to “detect” the true state of
nature. Let D be a set of all decisions which can be made on the basis of observations.
The elements of the set D are called decisions. We assume that D = S.

We define the loss function in the following manner

0, ifd=s
L(d,s)—{l’ ifd o s forde Dand se S.

This loss function gives penalty of one when our decision is not correct.

If we denote by X the space of all observations, than the function § : X — D is
called a decision rule. Any of the above-mentioned procedures of multiple comparisons
may be described as a decision rule.

A decision rule § is characterized by its risk function, i.e. average loss. Let
(#1,---, 1) € s. Then the risk function of the rule § equals to

R&(ﬂl) ce nuk) = P(ul,...,p,k){(s(x) # 5}'

Note that in general the risk depends on the differences between the values of means

(#1,-- -, iy). For example, if we assume k = 3 and o2 = 1, then it is easier to make
a misclassification for p; = uy = 1, p3 = 1.1 than for u, = p, = 1, uz = 5, though
both cases belong to the same state of nature. Only in the case g, = --- = p, the

risk does not depend on the values of means.

The risk of the rule § is the probability of the false decision. This probability
should be as small as possible. In our investigations we are interested in the probability
of the correct decision which equals 1 — Rs. We are going to compare this probability
for the four mentioned procedures.
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The probability of the correct decision is very difficult to calculate even in the
“simple” case of k = 3. Therefore, we performed a Monte Carlo experiment to
estimate the probability.

4. Experiment

To compare the probability of the correct decision a Monte Carlo experiment was
performed. In the experiment means of ten normal distributions were compared on
the basis of samples of size eight. Thus, k = 10, n = 8 and 02 = 1 were taken.

It is obvious that the probability of the correct decision does not depend on
the values of compared means but only on differences between them, so p; = 0 and
py < pg < -+ < pyo were taken. Hence, there are 42 possibilities of dividing a set of
means into disjoint homogeneous groups. All the possible states of nature are shown
in Table 1. Notation (31,42, .. .,%r) indicates m groups with 41,12, ...,%m means. It is
assumed that 47 > 49 > -+ > i, and 4y + 49 + - - - + iy = 10. For example, (4,3,2,1)
indicates the division into four homogeneous groups: {1, fig, ft3, g }s {its, Me> Bz}
{ug; 1o} and {410}

Table 1. States of nature for ten means

Number State
of groups
10 (1,1,1,1,1,1,1,1,1,1)
9 (2,1,1,1,1,1,1,1,1)
8 (2,2,1,1,1,1,1,1), (3,1,1,1,1,1,1,1)
7 (2,2,2,1,1,1,1), (3,2,1,1,1,1,1), (4,1,1,1,1,1,1)
6 (2,2,2,2,1,1), (3,2,2,1,1,1), (3,3,1,1,1,1), (4,2,1,1,1,1), (5,1,1,1,1,1)
5 (2,2,2,2,2), (3,2,2,2,1), (3,3,2,1,1), (4,2,2,1,1)
(4,3,1,1,1), (5,2,1,1,1), (6,1,1,1,1)
4 (3,3,2,2), (4,2,2,2), (3,3,3,1), (4,3,2,1), (5,2,2,1)
(4,4,1,1), (5,3,1,1), (6,2,1,1), (7,1,1,1)
3 (4,3,3), (4,4,2), (5,3,2), (6,2,2), (5,4,1), (6,3,1), (7,2,1), (8,1,1)
2 (5,5), (6,4), (7,3), (8,2), (9,1)

In the Monte Carlo experiment one has to choose values of means. It is difficult to
make a “planned” experiment in the sense of choosing mean values. Hence, values of

means i, ..., ft1o Were taken randomly according to the uniform distribution (u; was
always zero). For example, for the state (5,4,1) we generated two random numbers,
say 0 < z; < 2, and the values of p; = -+ = s =0, g = -+ = pg = 21 and

U0 = 22 were taken. Such a procedure was applied 1000 times for each state.
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At each generated point (g, ..., K10), 1000 sets of ten samples of size eight were
drawn from normal populations with means ;. To each sample all four procedures
were applied and it was noted if the obtained division was consistent with “reality”.

For generating random numbers from the uniform distribution, a 32-bit multi-
plicative generator was applied. This generator was written by the author. To obtain
normally distributed random numbers the algorithm of Box and Muller (1958) was
applied.

5. Results

The probability of the correct decision depends on the differentation of means. A clas-
sical measure of such a differentation is the non-centrality parameter 21;1 (u; — B)?,
where /i is the arithmetic mean of 4y, ..., u;. But in the case of the probability of the
correct decision this parameter is rather useless (Fig. 1). One can see high irregula-
rities in the dependence of the probability of a correct decision on the non-centrality
parameter. Therefore, presentation of results is made in a different way, namely in
relation to the probability of the correct decision of the W procedure. Figures 2, 3
and 4 present results of simulation for three states of nature: (9, 1), (7,1,1,1) and
(3,3,1,1,1,1), respectively. On the z-axis one can find probabilities of a correct de-
cision for W procedure, and on the y-axis differences between probabilities for W
and FTP, Newman-Keuls and Tukey procedures, respectively. If, for example, pro-
bability of a correct decision for W procedure is 0.40, FTP — (.28, Newman-Keuls
— 0.30 and Tukey — 0.10, then in the figure we have three points with coordinates
(0.40, -0.12), (0.40,—0.10) and (0.40, —0.30).

Figures 2, 3 and 4 show comparisons of the Tukey, Newman—Keuls and FTP
procedures with the W procedure. If the appropriate line is above zero then the
procedure is better than the W procedure. If the line is below zero, then the respective
procedure is worse than W. In Figure 2 results for the state (9,1) (two homogeneous
groups of nine and one mean, respectively) are shown. One can see that the W
procedure is better than Tukey and Newman—Keuls and is comparable with the FTP
procedure. In Figures 3 and 4 we may see that the W procedure is, in general, better
than the FTP and Tukey procedures. In the case (7,1,1,1) the Newman-Keuls and
W procedures are comparable, but in the situation (3,3,1,1,1,1) the W procedure
may be considered as the best one. For other states of nature figures are very similar
to the presented ones.
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Figure 2. Probability of the correct decision for (9,1) vs. W procedure
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Figure 4. Probability of the correct decision for (3,3,1,1,1,1) vs. W procedure
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6. Concluding remarks

1. There is no uniformly best procedure in the sense of the probability of the correct
decision.

2. The W procedure is, in general, better than the other considered procedures.
It should be remembered that this conclusion is based on the simulation results for
ten means. But it may be expected that for other numbers of compared means results
will be similar.

3. It may be interesting to change the loss function. The considered loss function
assumes that all errors of inference are of equal importance. But it is rather natural
to assume that some errors are of a higher weight than the others. Such investigations
are in progress.

4. The given definition of homogeneous groups is very restrictive. From the practical
point of view two means may be considered as equal if they “slightly” differ. One may
define an e-homogeneous group in the sense that two means p, and u, are in one
group if |p; — po| < &. Such groups may not be disjoint. From the mathematical point
of view it is much harder to work with e-homogeneous groups than with homogenous
ones. It should be mentioned that all procedures which are applied in practice were
constructed under a given definition of homogeneous groups.
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O pewnej procedurze poréwnan wielokrotnych

STRESZCZENIE

Praca przedstawia por6wnanie czterech procedur por6wnan wielokrotnych ze wzgledu
na prawdopodobiefistwo podjecia poprawnej decyzji. Wéréd procedur sa dwie kla-
syczne (Tukey’a i Newmana-Keulsa), procedura FTP Califiskiego i Corstena oraz
nowa procedura W. Na podstawie symulacji Monte Carlo pokazano, ze wéiréd poréw-
nywanych nie ma procedury jednostajnie najlepszej.

SLOWA KLUCZOWE: poréwnania wielokrotne, wnioskowanie jednoczesne, ANOVA.



